Lớp 1

Lớp 2

Lớp 2 - kết nối tri thức

Lớp 2 - Chân trời sáng sủa tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 6

Lớp 6 - liên kết tri thức

Lớp 6 - Chân trời sáng sủa tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Bộ Đề thi vào lớp 10 môn Toán năm 2022 gồm đáp án

Nhằm giúp chúng ta ôn luyện và giành được hiệu quả cao trong kì thi tuyển sinh vào lớp 10, ionianisia-region.com soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu tạo ra đề Trắc nghiệm - trường đoản cú luận mới. Với đó là những dạng bài xích tập hay có trong đề thi vào lớp 10 môn Toán với phương thức giải bỏ ra tiết. Mong muốn tài liệu này sẽ giúp đỡ học sinh ôn luyện, củng cố kỹ năng và sẵn sàng tốt mang đến kì thi tuyển sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề thi vào 10 môn toán có đáp án

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 tất cả đáp án (Trắc nghiệm - tự luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 bao gồm đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP thủ đô hà nội năm 2021 - 2022 bao gồm đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ những dạng bài tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở giáo dục đào tạo và Đào tạo nên .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện khẳng định của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và mặt đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) cùng (0; 0)

C.(-3; ) D.(2; 2) với (-3; )

Câu 5: quý giá của k để phương trình x2 + 3x + 2k = 0 gồm 2 nghiệm trái vệt là:

A. K > 0B. K 2 D. K (2 điểm)

1) Thu gọn biểu thức

*

2) giải phương trình cùng hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong phương diện phẳng tọa độ Oxy cho Parabol (P) : y = x2 và con đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = -1 , hãy vẽ 2 vật thị hàm số trên và một hệ trục tọa độ

b) kiếm tìm m để (d) cùng (P) cắt nhau tại 2 điểm rành mạch : A (x1; y1 );B(x2; y2) làm sao để cho tổng các tung độ của hai giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

*

Tìm x để A (3,5 điểm) mang đến đường tròn (O) có dây cung CD núm định. Call M là điểm nằm vị trí trung tâm cung nhỏ CD. Đường kính MN của đường tròn (O) giảm dây CD trên I. đem điểm E bất kỳ trên cung to CD, (E không giống C,D,N); ME cắt CD tại K. Các đường thẳng NE và CD cắt nhau trên P.

a) minh chứng rằng :Tứ giác IKEN nội tiếp

b) chứng minh: EI.MN = NK.ME

c) NK cắt MP trên Q. Chứng minh: IK là phân giác của góc EIQ

d) trường đoản cú C vẽ mặt đường thẳng vuông góc với EN cắt đường trực tiếp DE tại H. Minh chứng khi E cầm tay trên cung lớn CD (E khác C, D, N) thì H luôn chạy bên trên một đường vậy định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Tự luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình sẽ cho tất cả tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình đã cho biến

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình tất cả 2 nghiệm phân biệt :

*

Do t ≥ 3 đề xuất t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình sẽ cho gồm 2 nghiệm x = ± 1

*

Bài 2:

Trong phương diện phẳng tọa độ Oxy đến Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = 1; (d): y = 2x – 1

Bảng giá trị

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá chỉ trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là đường parabol nằm phía bên trên trục hoành, nhấn Oy làm trục đối xứng cùng nhận điểm O(0; 0) là đỉnh và điểm thấp tuyệt nhất

*

b) cho Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = m2 - (2m - 1)=(m - 1)2

(d) và (P) giảm nhau trên 2 điểm phân biệt khi còn chỉ khi phương trình hoành độ giao điểm bao gồm 2 nghiệm sáng tỏ

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi kia (d) cắt (P) trên 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ mang thiết đề bài, tổng các tung độ giao điểm bởi 2 đề xuất ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với đk m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 lúc 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa con đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI và ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp thuộc chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI trên K

=> K là trực trung khu của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng chú ý cạnh NP dưới 1 góc đều bằng nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp thuộc chắn cung PQ)(1)

Mặt khác IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp thuộc chắn cung KE)(2)

Từ (1) với (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bởi nhau)

=> ∠EHC = ∠ECH => ΔEHC cân tại E

=> EN là mặt đường trung trực của CH

Xét mặt đường tròn (O) có: Đường kính OM vuông góc cùng với dây CD tại I

=> NI là mặt đường trung trực của CD => NC = ND

EN là mặt đường trung trực của CH => NC = NH

=> N là trọng điểm đường tròn nước ngoài tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C cố định => H thuộc con đường tròn cố định

Sở giáo dục và đào tạo và Đào chế tạo ra .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn biểu thức sau:

*

2) mang đến biểu thức

*

a) Rút gọn biểu thức M.

b) Tìm những giá trị nguyên của x để giá trị khớp ứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) search m để hai phương trình sau có tối thiểu một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm thông số a, b của mặt đường thẳng y = ax + b biết đường thẳng trên đi qua hai điểm là

(1; -1) và (3; 5)

Bài 3 : ( 2,5 điểm)

1) cho Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình lúc m = - 1

b) tìm kiếm m nhằm 2 nghiệm x1 với x2 thỏa mãn nhu cầu hệ thức: 4x1 + 3x2 = 1

2) Giải câu hỏi sau bằng phương pháp lập phương trình hoặc hệ phương trình

Một công ty vận tải đường bộ điều một số xe cài đặt để chở 90 tấn hàng. Lúc đến kho hàng thì gồm 2 xe cộ bị hỏng bắt buộc để chở không còn số mặt hàng thì từng xe còn lại phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi số xe cộ được điều đến chở sản phẩm là từng nào xe? Biết rằng trọng lượng hàng chở sinh sống mỗi xe là như nhau.

Bài 4 : ( 3,5 điểm)

1) đến (O; R), dây BC cố định không đi qua tâm O, A là điểm bất kì trên cung to BC. Cha đường cao AD, BE, CF của tam giác ABC giảm nhau trên H.

a) minh chứng tứ giác HDBF, BCEF nội tiếp

b) K là vấn đề đối xứng của A qua O. Minh chứng HK trải qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Chứng minh Δ AHO cân

2) Một hình chữ nhật gồm chiều dài 3 cm, chiều rộng bởi 2 cm, xoay hình chữ nhật này một vòng xung quanh chiều dài của nó được một hình trụ. Tính diện tích toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) đến a, b là 2 số thực làm thế nào để cho a3 + b3 = 2. Triệu chứng minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ ±1; ±2

Ta tất cả bảng sau:

√x-1- 2-112
√x-1023
xKhông mãi mãi x049

Vậy cùng với x = 0; 4; 9 thì M nhận quý giá nguyên.

Xem thêm: Bựa Nhân Là Gì ? Bựa Nhân Nghĩa Là Gì

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi kia ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) bao gồm nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình gồm nghiệm:

*

Theo bí quyết đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy lúc m =3 thì nhì phương trình trên có nghiệm chung và nghiệm tầm thường là 4

2) Tìm thông số a, b của con đường thẳng y = ax + b biết đường thẳng trên trải qua hai điểm là

(1; -1) và (3; 5)

Đường trực tiếp y = ax + b trải qua hai điểm (1; -1) và (3; 5) nên ta có:

*

Vậy đường thẳng nên tìm là y = 2x – 3

Bài 3 :

1) đến Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) khi m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình tất cả nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình có tập nghiệm là:

S =1 + 2√3; 1 - 2√3

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = m2 - 2m + 1 - 20m + 24 = mét vuông - 22m + 25

Phương trình tất cả hai nghiệm ⇔ Δ ≥ 0 ⇔ mét vuông - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do đó ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy tất cả hai giá trị của m thỏa mãn nhu cầu bài toán là m = 0 và m = 1.

2)

Gọi số lượng xe được điều mang lại là x (xe) (x > 0; x ∈ N)

=>Khối lượng mặt hàng mỗi xe cộ chở là:

*
(tấn)

Do tất cả 2 xe cộ nghỉ bắt buộc mỗi xe sót lại phải chở thêm 0,5 tấn so với dự tính nên từng xe bắt buộc chở:

*

Khi đó ta gồm phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe cộ được điều mang lại là đôi mươi xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là mặt đường cao)

∠BFH = 90o (CF là mặt đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là mặt đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E với F cùng quan sát cạnh BC bên dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là mặt đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa con đường tròn)

=>KC⊥AC

BH⊥AC (BH là con đường cao)

=> HB // ông chồng

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> nhì đường chéo cánh BC cùng KH cắt nhau trên trung điểm mỗi mặt đường

=> HK đi qua trung điểm của BC

c) gọi M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là mặt đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân nặng tại O gồm OM là trung tuyến

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông tại M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) và (2) => OA = AH => ΔOAH cân nặng tại A

2)

Quay hình chữ nhật vòng quanh chiều dài được một hình tròn trụ có bán kính đáy là R= 2 cm, độ cao là h = 3 centimet